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Abstract

In this thesis, I present and document the underlying design and the performance of

Hubble in a Bottle!, a high-performance real-time visualization tool for astrophysical

TIPSY files. The data can be rotated intuitively in real-time by a virtual trackball

using quaternions, and was in contrast to TIPSY and it’s successor NChialada de-

signed with only one target in mind: Scalability and Speed.

Therefore many optimzations with respect to memory consumption, computational

power as well as interconnection bandwith were investigated.

The main contribution of this thesis is the parallel reduction-tree pipeline, an el-

egant and easy way to ascribe partial results from all nodes to the master node,

while concurrently performing operations on the collected data. This tree-structure

can be extended to all other collective MPI-operations, and additionally hides the

communication completely behind the computation. Furthermore a novel CORDIC-

like algorithm to efficiently taking logarithms, which is used here for the scaling, is

described in the appendix.

But I also want to identify the weak points of Hubble in a Bottle!, like the limited

scalability, and give some references for further improvements for a potential devel-

oper.
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Chapter 1

Introduction

The development of Hubble in a Bottle! was motivated by the need to quickly display

and analyze the results of the astrophysical N-Body simulations, done in our group

here, in real-time. Most data visualization packages are lacking either the possibility

to efficiently visualize point-based data-sets, or are only available in a serial version.

As the number of particles N of such simulations has increased due to algorithmic

and hardware advances as N = 100.3(year−1973) over the last 20 years (Lake et. al.,

2004), which is slightly more than twice as fast as the raw computational power of

computers has improved in the same time according to Moore’s law, it is becoming

evident that parallel high-performance visualization tools as Hubble in a Bottle! are

getting essential to close the ever growing gap between what we can simulate and

what we can actually visualize in real-time. Hubble in a Bottle! comes as a very

competitive serial Version, to tackle data-sets up to 107 in real-time on individual

workstations, and as an MPI-based parallel version for Clusters of Workstations and

Supercomputers to make nearly Hubble Volume Simulations (Jenkins et. al., 2001)

fly.

Beside zooming, Hubble in a Bottle! can rotate the particles in real-time in an

intuitive way using a virtual trackball and quaternions, it also supports four plot

modes including two for smooth images, delivers ten different colormaps and an

Sobel edge detection filter.

Even though, Hubble in a Bottle! has in the meantime left the experimental stage

and is now very stable, it’s still a beta version. There are still some things to do, but

2



1.1. History: Who did what, or who is to blame 3

it’s Open Source under the GNU GPL and can be downloaded for experimenting

and further development from http://hubble.sourceforge.net/ via CVS.

Therefore this thesis, and especially the next chapter, is also thought as a developer’s

manual in which not only the design and what was done right is described, but also

what can be improved and what is missing. At this stage Hubble in a Bottle! consists

of roughly 10000 lines of code and much dedication of Tiziano Mengotti and myself.

Hence we, together with Dr. Joachim Stadel, would appreciate it and encourage

further efforts to improve and extend the capabilities of Hubble in a Bottle!. For

all of those who want to use Hubble in a Bottle! the provided readme file and the

user’s homepage is warmly recommended, as it is intended as a end-user manual for

the program.

1.1 History: Who did what, or who is to blame

I would like to emphasise, that I also didn’t started from scratch. I started from

Tiziano Mengotti’s Version 0.336 which can be found at our Sourceforge.net project-

page: http://sourceforge.net/projects/hubble. Tiziano is the initiator of

Hubble in a Bottle! and created the first running version during his tenure as a

semester thesis student here at Ben Moore’s Cosmology & Computational Astro-

physics Group. His serial version was already quite stable and achieved about 5 fps

with 1.3 million particles on a 400x400 pixels screen. The according parallel version

was very unstable and couldn’t scale beyond 1 or 2 fps. But under consideration of

the short spell he spend, it was an admirable piece of work.

The trackball was a result of an introductory computer graphics course at the ETH

Zürich held by Prof. Gross, which both Tiziano and myself attended. Although I

did an implementation of the trackball by myself, the solution of our teaching as-

sistant Reto Lütolf was used, with some minor modifications and optimizations by

both of us.

The Tipgrid code described later is a courtesy of Dr. Joachim Stadel, my actual

tutor. Except of two errors pertaining the zooming function I let his code unaltered.
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Chapter 2

The Architecture of Hubble in a

Bottle!

Generally speaking, Hubble in a Bottle! is a particle pipeline, in which all particles

are first transformed, which comprises rotation and possible translations, and then

projected onto a screen. After that each pixel is colored according to the out coming

ValueMap, which is generically the quantity of interest per pixel. Finally an optional

filter is performed and the color-bar is painted. All together only basic operations,

but what makes it hard is that one has to perform every single step 10 million times

per second to achieve 15 fps on the default 768-to-768 pixel screen, which is the best

pixel-throughput achieved.

But there’s more to it as that, because Hubble in a Bottle! is also available as

a parallel version, which is working in a divide and conquer fashion. Therefore

all particles are distributed over all concerned processors, which are all doing the

necessary computation, concurrently. In the end all partial results are carried back

to the master node through a tree structure and moreover pipelined, so that the

necessary calculations are concealed behind the inherent communication.

2.1 The Role of OpenGL

As already mentioned Hubble in a Bottle! is designed to manipulate point-based

data, for this reason the power of triangle-based graphics cards can not be capitalized

4



2.2. The Basic Design 5

in the obvious way. At least it is challenging to exploit graphics cards for points in

a parallel manner, although it would be very interesting to work on this topic. In

Hubble in a Bottle! the graphics pipeline is bypassed for this reason, and all the

point-based rendering is performed on the CPUs. Of course this is a disadvatage

at first glance, as the pure performance of GPUs stays unused, but in this way the

rendering can be much more easily parallelized using available parallel programming

extensions like MPI or OpenMP.

Even so the OpenGL and the GLUT library is used for the GUI, for displaying the

spheres, for lighting and for some image enhancing methods like point antialiasing,

smooth-shading and dithering. These operations have to be performed for all pixels

and for each frame, but a not too out-dated graphics card can perform them nearly

instantaneously, so that the GPU is running most of the time idle.

Although the rendering step is performed separately on the CPUs without using

OpenGL, it is consistent with OpenGL, as the rendered frames are written into the

framebuffer of the graphics card, accessed through OpenGL commands. OpenGL

and Hubble in a Bottle! are thus projecting on the same screen pixels and this above

all fully syncronized. In principle this is rather straight-forward, but it can be very

demanding to meet the real-time constraints, especially when trying to alter the

underlying data-representations.

While it is written in really every OpenGL introduction, one cannot overemphasise

it: OpenGL is a State Machine with all it’s pros and cons. Everything is a state,

and every state which is set is retained up to the bitter end if not changed, even

beyond functions and files. Anyone knows it, but nevertheless, it’s a major source

of errors, so be warned!

2.2 The Basic Design

2.2.1 Some comments about the organization of the files

Altogether the Hubble in a Bottle! package contains 20 C-source files, each with

it’s own header-file for constant definitions, defines for the C-preprocessor and of

course the function prototypes. For a hubble executable 13 and 14 files are used

March 10, 2005



2.2. The Basic Design 6

respectively, depending on if it’s the serial or the parallel version.

To give an overlook over the whole program, the essential files are shortly descibed

in the following table:

viewer.* Main program with OpenGL callbacks.

startracker.* The particle-pipeline: The transform and projection is done here.

MPI support.* Functions for the parallel processing, including the reduction-tree.

tree.* Construction of the reduction-tree and the the CPU-wiring.

trackball.* Routines for the virtual trackball with quaternions.

colormap.* Computation of interpolation values for the different color maps.

tipsy.* Functions for reading TIPSY-files.

filemgr.* File management routines.

plane.* The Tipgrid code: Functions for smoothing the images.

filters.* Post-processing filters, but till now only a Sobel filter is implemented.

threednow.* Optimized 3Dnow! routines for the AMD architecture.

sse*.* Optimized SIMD routines for the Intel architecture.

bmp.* Functions to write bitmap screen-shots into files. (Don’t work at all)

hooks.* Empty skeleton routines for OpenGL hooks.

Makefile*.* Diverse Makefiles for building the program.

hsmtoeps.* Functions to integrate hsm-files into TIPSY binary files.

dentopot.* Functions to convert eps-files into the TIPSY binary file-format.

par read.* Functions for reading-in files in parallel, but not used yet.

Table 2.1: Short desciptions of the source-code files

To define it’s origin every functions has a unique prefix, e.g. ST for startracker.c,

MPIS for MPI support.c and so forth.

2.2.2 The Initialization and beyond

The main function is domiciled in the file viewer.c, in which first of all the command

line is read, and in case MPI SUPPORT is defined in startracker.h, the MPI envi-

ronment is initialized through MPIS Init. After that the OpenGL Utility Toolkit
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(GLUT) environment is set-up followed by a call to ST Init. In ST Init the presence

of a density-file is checked and the plot-mode is set: Max-Density in case the density

information is available, and Line-of-Sight mode otherwise. Then the ValueMap and

Image arrays are allocated. Both have entries for each pixel, the first array com-

prises the value of interest, thus the density of each pixel after transformation and

projection in case of the standard max-density plot-mode, whereas the latter array

contains the final color of each pixel. Proximate a colormap is selected and an op-

tional filter is initialized. This requires the allocation of a temporary array to buffer

the Image array in case the optional filtering is performed. In the end the Viewport

is set through glViewport and the pixel storage mode is specified as unpacked byte-

alligned.

Going back to the main function of viewer.c, the window is created, the menu is

initialized and created and the various callbacks are registered obeyed by the entry

into the glutMainLoop. The glutMainLoop is a never-ending loop, which is con-

stantly conducting callbacks till the program is exit.

The underlying concept of callbacks is called event-driven programming. Callbacks

are regular functions which are registered to the GLUT system, that means that

they are connected to events like pressing a key of the keyboard or pressing a mouse

button or even resizing the window. If for example the window is resized the func-

tion connected to reshaping the window is called, which is in this case the function

callback reshape which sets the window height and width variables, but also triggers

an update of the viewport.

The actually essence of Hubble in a Bottle! is located in the display and in the

idle callback. The display callback releases the current GL matrix and calls the

trackball function TB matrix, which returns the transformation matrix. The trans-

formation matrix is used as an input for the function ST CallList or as the case

may be MPIS CallList, whose result, the fully rendered image, is then written into

the framebuffer together with the spheres through ST DisplayBuffer. Then double

buffering is performed by glutSwapBuffers and the GL matrix is fetched back from

the matrix stack. It is then matter of the idle callback to mark the framebuffer

for redisplay via glutPostRedisplay and to force its execution within finite time by
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glFlush.

As in the parallel version the whole frontend is performed only on the master node,

the glutMainLoop is emulated by a function called MPIS Receive-MatrixAndCompute.

The arising question of how to transmit user-interaction in a consistent way to all

processors, especially when they are running highly asyncroniously will be in-depth

covered in the forthcoming user-interaction section.

2.2.3 The Driving Core

The intrinsic engine of Hubble in a Bottle! are the functions called by ST CallList

or MPIS CallList, if MPI support is enabled. Except of an additional call of

MPIS SendUserInteraction these two version are fully symetrically. Many other

functions are also available in a ST and a MPIS version for the serial and the

parallel variant of Hubble in a Bottle!. If so, both functions are implementing the

same logic, but this doesn’t mean that the codes are looking similar, as parallel

programming is fundamental more cumbersome than serial programming.

Coming back, the function CallList wrap the function ST Project, scales the Val-

ueMap in event of SMOOTH is defined, is doing the color mapping and performs

the filter. In general scaling is done right after the TIPSY file is imported, because

this way the scaling has to be performed only once. Nothing speaks against this as

long as only the line-of-sight or the max-density mode is used. The scaling is about

log-scaling, which is non-linear. Making the scaling during the preprocessing and

selecting the maximum value is fine, but summing up, as it is done in the smoothing

modes, is not feasible. In this case the scaling has to be done on-the-fly for each

frame in the function CallList.

The function ST Project is responsible for the transformation and the projection.

More precisely the transformation is the multiplication of each position vector with

the 4 × 4 transformation - matrix coming from the trackball function TB matrix.

The position vector is a 4× 1 vector with the entries x, y, z and w for the harmonic

coordinate. The transformation is calculatng the new positions in the physical space,

wheras the projection is resposible to figure out at which screen coordinate the point

has to be shooted. For the projection the obvious parallel projection is used, which
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has the benefit, that the z-coordinate is neglected, which saves valuable memory

space.

Having computed the pixel screen, the according ValueMap entry is updated, and

here the different plot-modes come into play. In the line-of-sight mode the points

intersecting the line-of-sight are determined, the finally value written into the Val-

ueMap is the sum of surface densities

∑
mi ∗ (nx/Lx)

2, (2.1)

where mi is the mass, nx the cell-dimension and Lx the simulation length.

The maximum density mode selects the maximum density of all the points falling

onto the same screen pixel. The smoothing modes are calling either the iPlaneSlice or

the iPlaneProject function, which will be descibed in the section about the Tipgrid

code, but because the resulting values are summed up in the plane context, the

scaling couldn’t be done during the preprocesing. Speaking of the plane context,

that has to be initialized through the PlaneInitialize function. In Hubble in a Bottle!

the plane context is initialized and finished at every frame, as the plane context

fields are reset, but above all to update the simulation langth variable, which I have

choosen to be the inverse of my zooming-factor, in terms of simulating zooming even

in the smoothing modes.

The only issue left is that the cell values have to be extracted from the plane context

before releasing it, which is by the way done with PlaneFinish.

Additionally the calculation of the frame-rate is performed here, to take only the

computation and the communication into account, but disregard the SSH latency,

so that the correct frame-rate is displayed even if one is using SSH.

2.2.4 The Parallel Version of Hubble in a Bottle!

Since all topics of interest are dedicated a separate subsection, I will keep this one

quite short. After all particles with their positions, densities and smoothing radii

are read in and distributed, the master node went into the glutMainLoop. The glut-

MainLoop causes the master node the execute the display callback for each frame,

which imply a call to MPIS CallList. In contrast the other nodes are entering the
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2.3. The Parallel Tree and it’s generation 10

function MPIS ReceiveMatrixAndCompute, which is a never ending loop, that re-

verse engineers the glutMainLoop function plus covers the user interaction.

The parallelism is realized here through divide-and-conquer, this means that the

particles are distributed over all available CPUs. Each CPU is performing the

transformation and projection operations locally. After each frame all intermediate

results are reduced to the master node. The local ValueMaps are all of the same size

as the global ValueMap, with the constraint, that only the elements which are be-

longing to local points after the transformation are non-zero. The two consequences

out of this is that depending on the number of CPUs the local ValueMaps may

be very sparse, and second that the local ValueMaps have to be merged into the

global ValueMap contingent on the plot mode. In case of the max-density mode, the

reduction-operation is the max-function, whereas it’s otherwise the sum-opertion.

To my mind the possible sparsity couldn’t be exploited, as long as the CPU quantity

and the sparsity aren’t huge.

2.3 The Parallel Tree and it’s generation

As indicated the local ValueMaps are ascribed using a tree. In Hubble in a Bottle! a

binary tree is used, since my own experiments with different n-ary trees uncovered,

that n=2 or at most n=3 seems to be the best choice, since higher options for n

yields to much merging at every single node and leads to a decrease in performance.

What many don’t know is that being a binary tree is only a very week restriction.

The following recurrence formula, which is equivalent with Sloane’s integer sequence

A001699, quote how many different valid binary trees are possible with altogether

n nodes and leafs:

an = a2
n−1 + an−1(1 +

√
4an−1 − 3) (2.2)

A binary tree with together 7 nodes and leaves, which is used in Hubble in a Bottle!

for 4 CPUs, has for instance has 44127887745696109598901 different realizations.

Even the most restricted binary tree which is the balanced binary-tree, in which

each node except the tree leaves has a left and right child, and all tree leaves are at
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2
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0

Figure 2.1: Perfect Binary Tree

the same level, has

Cn =
1

n − 1

(
2n

n

)
=

(2n)!

(n + 1)!n!
(2.3)

different realizations in the event of together n nodes and leaves. By the way Cn are

the Cartan numbers, or Sloane’s integer sequence A000108.

The height of a binary tree can be highly variable, as for a binary tree of height h

with n nodes only the follwing weak inqueality counts:

h ≤ n ≤ 2h − 1 (2.4)

With the benefit of hindsight I should have used the complete binary tree, in which

every level, except possibly the deepest, is completely filled. This tree turned out

to be the best in terms of performance, ease of implementation and elegance. The

tree I used is also a balanced binary tree, more precisely the perfect binary tree,

with the same height as the height-balanced binary tree, but I overlooked the third

performance determining factor beside degree and height which is the offset. A

perfect binary tree is a binary tree with all leaf nodes at the same level, but allowed

offset, as seen in Figure 2.1.

The accumulated offset is the same, but it’s not perfectly distributed, so that the

load of the CPUs is not fully balanced. This is because the function TR treeGen is

assigning the available CPUs in a pairwise row-major manner from the leafs to the
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2.3. The Parallel Tree and it’s generation 12

root.

In detail all CPUs are first of all assigned to leaves, then it is iterated over all these

leaves and they are merged together to an inner node as long as an even number

of leaves is left. The resulting innernodes out of the merged leaves are numbered

backwards, starting from n-1, as a binary tree has always one less inner node as

leaves. In the odd case the remining node is propagated one level up, but stays a

leaf. This procedure is continued till the root with CPU ID=0 is reached.

At certain CPU numbers it could happen, that the rightmost CPU is propagated

over multiple levels and gets an offset greater than 1. Now one can see the difference

between the complete binary tree and the perfect binary tree: the complete binary

tree allows only a maximum offset of one.

As next TR bugGen generates the bug table out of the wiring tree. A bug is the

wiring for each node, which is called bug as each node has two inlets and two outlets.

To get the bug the ensemble tree is traversed, and for each node the predecessor and

the succesor is recorded. These sets are scaned for manifold in- and outputs, which

have to be eliminated. Now only the calculation of the offset is remaining, that is

equivalent to couting the number of self-referencings at the first level. In Figure 2.1

for instance the offset of node 2 is one.

In reality the generation of the tree and the bugs is rather complicated as many ex-

ceptions has to be covered. This is an evidence that my matrix data-structure isn’t

the way to go, and that this ought to be done through a much more elegant and intu-

itive tree data-structure, since the underlying wiring is also a tree-structure. Beside

that my way is horrible complicated it works fine and is reasonalby fast, therefore if

one is not interested in changing e.g. the tree-structure, one should consider these

functions as a working black box.

The final issue left is that each binary tree has one less inner-node as leafes, which

causes that one node has only one in- and one outlet instead of two and furthermore

that the master-node has only one outgoing. If not covered it’s only a matter of

time till Hubble in a Bottle! crashes with a buffer-overflow, triggered by underem-

plyed nodes, which are running too much out of sync. Therefore a self-syncronizing

mechanism has to be included. As one can recognize from Figure 2.2 this is tackled
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CPU 0 CPU 1 CPU 2

Figure 2.2: CPU-Bug wiring

here by connecting the last node to itself (red arrow) and to the master-node (green

arrow). From this it follows that the last node is only sending out it’s local Val-

ueMap, the merged ValueMap is sended to itself only to syncronize the last node,

and in order to give the master-node a target to send it’s result to keep all bugs

symmetrically. Additionally the master node is writing the final result to the global

ValueMap, and is shifting the whole array to the right, by extending the loop and

skiping the first iterations.

2.4 The Parallel Tree Pipeline

It turned out to my surprise, that reducing the local ValueMaps in parallel to the

master node, wasn’t a breakthrough in performance. The subsequent analysis ex-

posed, that most of the time was wasted by waiting for merging and sending or

receiving respectively of local ValueMaps.

The idea of leading back the local ValueMaps to the root in a tree-wise manner

can only be exploited to the full extent by pipelining it. Pipelining is done through

packetizing the ValueMaps into small chunks and sending them in succession instead

alltogether. Moreover non-blocking sends and receives have to be used, to overlap

the transmission time with calculation. In MPI non-blocking sends and receives are

implemented via MPI Irecv and MPI Isend.
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2.5. Parallel User Interaction 14

Summarized every node is getting a local and a merged ValueMap chunk at each

iteration, and is also sending out it’s local and it’s merged ValueMap. The merged

output and the according inputs are displaced by one iteration, because the inputs

are merged during receiving the inputs for the next iteration, so that at no instance

of time it really has to wait at all. By the way no time consuming syncronization

barriers are used at all through out the whole code, since the ensemble pipelined

tree is self-syncronizing as already outlined.

The adjustment of the actual buffersize is crucial for the resulting performance and

denpends highly on the concrete machine. It shaped out, that 128kB seems to be the

best choice for the zBox, which is in full agreement with the benchmarks performed

by Dr. Joachim Stadel, but on an empty machine. As Hubble in a Bottle! is using 16

bit unsigned short int and 32 bit float respectively depending if FAST is defined or

not, the 128kB are equivalent to 65536 or 32768 ValueMap array elements. Because

the optimal buffersize depends on multiple factors which are in part conflicting each

other, I would not like to think myself capable to make any predictions about the

optimal buffersize for the forthcoming zBox2.

2.5 Parallel User Interaction

As already indicated it’s far from obvious how to propagate user interactions to

all processors in a consistent way, since user interaction can be carried out fairly

anytime. Also in Hubble in a Bottle! the CPUs are running greatly independent and

therefore asynchronous from each other due to lack of any syncronization barriers,

which makes Hubble in a Bottle! fast, but also user interaction propagation rather

complicated.

The solution I came up with are user interaction arrays which are broadcasted

together with the transformation matrix for each frame. The variables with are

send to all processors are the image size, the actual zooming factor, some status

bits determining if certain function are turned on or off, the translation and a flag

if these values are valid, since tranlations don’t have to be performed everytime. In

the end there are variables for the mask level, the projection width and the z-shift
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which are all belonging to the smoothing modes, but this is all stuff that is better

looked up directly in the code in the function MPIS SendUserInteraction.

In the beginning the amount of variables that have to be tranmitted was pretty

manageable, bit by bit I realized that even more variables have to be transmitted,

and additionally the integration of more and more features and functions leads

to anymore user interaction variables. Finally the the user inteaction arrays have

become fat, so that in the meantime I arrived at the conviction, that organizing the

user interaction variables in an well organized struct would be the more elegant way.

2.6 Optimizations: A better Transform & Project

The transform section is the one which consumes the most compute power, and is

in the serial variant of Hubble in a Bottle! the performance determining factor.

Already Tiziano Mengotti invested a good deal of work in this section, by writing

dedicated SIMD procedures in SSE and 3Dnow for the Intel and the AMD architec-

ture. As specified in the above overview the transformation consists of multiplying

the 4×n particle matrix with the 4×4 transformation matrix. As only the very sim-

ple parallel projection is used here, which don’t need the z-coordinate, I integrated

the transformation and the projection into a single block. The benefit of this is that

the z-coordiante don’t have to be calculated and is hard coded to zero, and that one

can save an additionally function call per iteration. Even in an ANSI C version, but

with loop unrolling, this is about 10% faster than Tiziano’s SIMD versions.

As frontside bus throughput is an important issue, especially in the parallel version,

because both CPUs of a single zBox node were using only one frontside bus to-

gether, Joachim Stadel came up with an idea to save precious memory bandwidth.

Instead of overwriting the whole particle matrix with the new values after each

transformation, Joachim proposed to retain the particle matrix unchanged. The

actual transformation matrix is in this case received through multiplying the old

transformation matrix with the transformation matrix computed by the trackball

function TB matrix.

My implementation of this proposal is slightly different, but retains the main idea.
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As the particle matrix is composed of n 4 × 1 position vectors, I decomposed the

matrix-matrix multiplication into a vector-matrix multiplication. This way only not

the whole matrix has to be stored, but only a single 4×1 vector after the transforma-

tion. In order to get it straight again the matrix-matrix multiplication is substituted

by a loop of all particles with a single vector-matrix multiplication. Of course in the

sum over all iterations the same amount of data is stored, but because only 4 floats

are stored at once, they are buffered in registers instead of in main memory, so that

the front side bus isn’t used at all.

In Tiziano’s version the particle matrix is many magnitudes bigger than the 4 × 4

transformation - matrix, so that he only took care about cache locality of the par-

ticle matrix, although he confessed on inquiry that he done it right by chance.

Cache locality is crucial in terms of performance, since not a single data is fetched

from the cache, but a whole cache line of typical sizes between 8 to 64 bytes. As

cache misses are inherently expensive, one should take care to get the most out of a

single cache line fetched from the cache. This is done by iterating over matrices in

the natural order as they are stored in memory. The irritating point is that different

programming languages are mapping multidimensional arrays to linear arrays dif-

ferently, which leads to that textbook solutions couldn’t be inherited without taking

care about the structure of the matices.

Since the particle matrix is split into position vectors, one could think that it’s

benetitial to rewrite the trackball functions so that the transformation matrix is

built-up in a transposed way. Although this task seems to be very easy it turned

out that the opposite is the case, because also the spheres should deal with the

transposed matrices, without actually transposing the matrix, as the benefit of in-

creasing the cache-locality would be away. I never got it right for the points and

for the spheres at the same time, but it later turned out, that this is inconsiderably,

because the cache line size of a Pentium4 CPU is 64 byte so that the whole trans-

formation matrix fits into a single cache line no matter if the matrix is stored row-

or column-major.

The present transform & project isn’t anymore programmed using SIMD instruc-

tions, but in optimized ANSI C, due to lack of time. However it would be defini-
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tively a very nice mini project to implement a fully optimized version of transform

& project, perhaps with GPU support, because it only needs very limited knowledge

of the whole code, but more to come in the outlook section.

2.7 Integration of Tipgrid for Smooth Images

The much mentioned Tipgrid code is a particle to grid converter devised from Dr.

Joachim Stadel. To make a long story short, Tipgrid is projecting the particles onto

a plane or a small slice respectively by weighting the particles within their smooth-

ing radii with a kernel.

Till now tipgrid can only make orthogonal cuts, so that some workarounds were nec-

essary, to furnish Tipgrid the whole navigation functionality of Hubble in a Bottle!,

like real-time rotation, translation and zooming. Now one can also uptake the power

of the, in the last section presented, vector-wise rotation of single points, since this

makes adding the navigation functionality easy without changing the Tipgrid code

at all.

The only difficulty left is to take care where to perform the operations. First of all

in front of the loop, which iterates over all points, the Tipgrid plane is initialized

through PlaneInitialize. The translation is done by adding the translation vector to

the position vector of each particle before the transformation. After that the actual

transformation is accomplished, this is then equivalent to a rotation of the Tipgrid

plane, which isn’t working correctly so far. Afterwards the ensemble plane could be

shifted in z-direction if desired, by adding a constant value to the z-coordinate after

the transformation. Now all preconditions are fulfilled to call the function iPlaneS-

lice, or as the case may be iPlaneProject. The projection step is consciously skiped,

since the functions iPlaneSlice and iPlaneProject are working in physical space and

performing the projection by themselves. The resulting pixel values are written into

the Tipgrid context, from which they have abstracted in a separate loop over all

screen pixels after the particle loop has finished. If multiple different particles are

project onto the same screen pixel they are added together. This is the reason that

the log-scaling couldn’t be performed in the preprocessing of Hubble in a Bottle!,
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if SMOOTH is defined, but I found a way to minimize the penalty of scaling the

ValueMap during runtime in every iteration, but this subject of the next section.

2.8 The Theme of Scaling

The scaling is performed through the following formula:

V alueMap[i] = (MaxColors − 1) ∗ 6600 ∗ log10(V alueMap[i] + 1)

32768
(2.5)

to receive equivalent colored frames like TIPSY.

If SMOOTH isn’t defined scaling isn’t a topic at all, because it’s done during the

preprocessing for the whole ValueMap by the master node alone and only once.

Since scaling couldn’t be done at preprocessing time for the well-known reason that

the logarithm isn’t additive, therefore the scaling has to be performed in every iter-

ation during runtime for the ensemble ValueMap. The application of identity (2.5)

results in a tremendous decrease in performance. However, as most of the pixels

are black, what is equivalent to V alueMap[i] = 0, log10(V alueMap[i] + 1) = 0 and

therefore also the whole term (2.5). This simple modification implicates that scaling

leads to a slow down anymore.

Furthermore log10(x) could be substituted by log2(x)
log2(10)

= log2(x)
3.321928...

= 0.30103... ∗
log10(x). Using the CORDIC-style algorithm, I’m describing in the appendix, to

calculate the remaining logarithm dualis, taking logarithm could be potentially fur-

ther accelerated. This algorithm isn’t implemented yet, but is going to be integrated

in the near future.

2.9 Transformations in Homogeneous Coordinates

The three transformations used by Hubble in a Bottle are:

P’ = T + P (Translation)

P’ = S ∗ P (Zooming)

P’ = R ∗ P (Rotation)

(2.6)

The sum of all transformations describing an affine transformation, the translation

is thereby treated as an addition. It would be desirable, if all transformations could
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be described as consistent multiplications. For this reason, so called homogeneous

coordinates are iintroduced. They could be considered as a extension of the vectors

through an additional dimension. A 3D Point P is then represented through the

vector P = (x, y, z, W )T . Every 3D point P has then infinitely many homegeneous

coordinates depending on the choice of W. Since points which are emanating from

each other, through a multiplication with a scalar t, are equivalent, every point

could be understood as a straight line in a higher dimensional space of homogeneous

coordinates. Through homogenization, what is the division through W, one receives

P = ( x
W

, y
W

, z
W

, 1)T , which represents an affine 3D subspace, or 3D hyperplane, in

the 4D space of homegeneous coordinates.

Now all transformations, and not only the three used here, can be expressed as

4 × 4-matrices:

T(tx, ty, tz) =




1 0 0 tx

0 1 0 ty

0 0 1 tz

0 0 0 1




(Translation)

S(sx, sy, sz) =




sx 0 0 0

0 sy 0 0

0 0 sz 0

0 0 0 1




(Zooming)

Rx(θ) =




1 0 0 0

0 cosθ −sinθ 0

0 sinθ cosθ 0

0 0 0 1




(Rotation)

(2.7)

The rotations Ry(θ) and Rz(θ) are analog.

Ry =




cosθ 0 sinθ 0

0 1 0 0

−sinθ 0 cosθ 0

0 0 0 1




Rz =




cosθ −sinθ 0 0

sinθ cosθ 0 0

0 0 1 0

0 0 0 1




(2.8)
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The generic matrix composed of multiple affine transformations looks as follows:

M =




r11 r12 r13 tx

r21 r22 r23 ty

r31 r32 r33 tz

0 0 0 1




(2.9)

Affine transformations may be arbitrarily concatenated as matrix products in ho-

mogenous coordinates, but two matrices M1 and M2 are only commutative if the

following holds:

M1 M2

Translation Translation

Zooming Zooming

Rotation Rotation

Zooming Rotation

The matrix returned by the function TB matrix is in the same line as matrix (2.8),

and is therefore called transformation matrix and not only rotation matrix.

Homogeneous coordinates are used throughout the whole code and shouldn’t be

mixed up with the quaternions described in the following section.

2.10 Mathematics of Projection

In this section I only want to derive the projection matrix of the parallel projection,

which is a special case of the perspective projection. In Figure 2.3 the perspective

projection to onto a plane parallel to the XY-plane at distance z = d is shown. For

the perspective projection the following holds:

xp

d
=

x

z
(2.10)

yp

d
=

y

z
(2.11)

For z �= 0, this is equivalent to:

xp =
d ∗ x

z
=

x

z/d
(2.12)
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Figure 2.3: Perspective Projection

yp =
d ∗ y

z
=

z

z/d
(2.13)

By means of homogeneous coordinates the projection could be expressed with the

following 4 × 4-matrix:

Mper =




1 0 0 0

0 1 0 0

0 0 1 0

0 0 1
d

0




(2.14)

For an alternative perspective projectio into the (z = 0)-plane with the center

z = −d, as seen in Fugure (2.4), the following holds:

xp

d
=

x

z + d
(2.15)

yp

d
=

y

z + d
(2.16)

or as well

xp =
d ∗ x

z + d
=

x

(z/d) + 1
(2.17)
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Figure 2.4: Alternative Perspective Projection into the (z = 0)-Plane

yp =
d ∗ y

z + d
=

z

(z/d) + 1
(2.18)

For the according 4 × 4 projection-matrix one receives:

M’per =




1 0 0 0

0 1 0 0

0 0 0 0

0 0 1
d

1




(2.19)

The parallel projection is then the limit for d → −∞. The resulting projection-

matrix for the parallel projection used in Hubble in a Bottle! is finally

M’ort =




1 0 0 0

0 1 0 0

0 0 0 0

0 0 0 1




(2.20)

2.11 The Trackball and the Quaternion Principle

Another very elegant possibility for the definition of rotations and translations are

the so called quaternions. In comparision to homogeneous coordinates they have

a more compact representation, but they are also computational a little bit more
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expensive.

Although homogeneous coordinates and quaternions are covering the same purpose,

they are completely different concepts and shouldn’t be confused. Quaternions are

in Hubble in a Bottle! only used in the trackball functions, since it’s much more

intuitive and elegant to code movements on a virtual sphere as quaternions.

2.11.1 Defintion and Properties of Quaternions

Quaternions are defined as follows:

q = c + xi + yj + zk (2.21)

whereas c, x, y, z are real and i, j, k are imaginary numbers. In general the subsequent

notation is used:

q = c + u (2.22)

in which c is the real part and u = xi + yj + zk the absolute or pure quaternion.

A quaternion may hence understood as a ”hypercomplex number” and describes a

reasonable extension of a complex number c = a + bi into the fourth dimension.

Onto quaternions a series of operations are defined:

• Addition

q + q′ = (c + c′) + (x + x′)i + (y + y′)j + (z + z′)k (2.23)

• Multiplication

qq′ = (c + u)(c′ + u′) = (cc′ − u • u′) + (u × u′+ < cu′ > + < c′u >) (2.24)

in which the operations inner product •, scalar multiplication <> and cross-

product × are defined as follows:

u • u′ = xx′ + yy′ + zz′ (2.25)

< cu >= cxi + cyj + czk (2.26)

u × u′ = (yz′ − zy′)i + (zx′ − xz′)j + (xy′ − yx′)k (2.27)

The hence derived properties
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• Multiplication property of the basis [1,i,j,k]

i2 = j2 = k2 = −1

ij = k, ji = −k; jk = i, kj = −i; ki = j, ik = −j
(2.28)

• Additive and multiplicative identity

0 = 0 + 0i + 0j + 0k

1 = 1 + 0i + 0j + 0k
(2.29)

• Additive and multiplicative inverse

−q = −c − xi − yj − zk

q−1 = 1
|q|2 q̄

(2.30)

• Conjugated element q̄ to q = c + u

q̄ = c − u (2.31)

• Absolute value of quaternions

qq̄ = (c2 + u • u) + (u × u− < cu > + < cu >)

= c2 + x2 + y2 + z2 = |q|2
(2.32)

turning the set of quaternions to a ring (Q, +, ∗) in the mathematical sense. As a

ring is an abelian group under addition, but only a semigroup under multiplication,

the multiplication of quaternions is not commutative.

The, in connection with transformations, important quaternions are the unity quater-

nions, thus quaternions with absolute values of one. Using the unity vectors N =

[Nx, Ny, Nz]
T in R3 and I = [i, j, k]T

q = c + u

u = sn, with n = N ∗ I
(2.33)

From this it follows, that |q|2 = c2 + u • u = 1 could be rephrased to c2 + s2 = 1, so

that every unity quaternion could be expressed in the form

q = cos(Θ) + sin(Θ) ∗ n (2.34)
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Figure 2.5: Characteristic Vectors of a 3D Rotation

2.11.2 Rotations and Translations using Unity Quaternions

The rotation of a point P to P’ about an arbitrary axis N is shown in Figure 2.5.

The conditional equation of point P’ is

P ′ = cos(Θ)P + (1 − cos(Θ))N(N ∗ P) + sin(Θ) ∗ (N× P) (2.35)

presumed U ⊥ V and V ⊥ N.

The according rotation-matrix R(Θ,N) is

R(Θ,N) = cos(Θ)I3 + (1 − cos(Θ))NTN + sin(Θ)AN (2.36)

with

N = [N1 N2 N3], P = [P1 P2 P3], I3 =




1 0 0

0 1 0

0 0 1


 , AN =




0 N3 −N2

−N3 0 N1

N2 −N1 0




If one considers the analogy between the point P = [x, y, z] in 3D and the pure

quaternion p = 0 + ν = xi + yj + zk, and also a unity quaternion q = c + u, then

the following rotation operation with quaternion could be defined:

Rq(p) = qpq̄ (2.37)
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After a few conversion, one receives

Rq(p) =< (c2 − u • u)ν > + < 2(ν • u)u > + < 2c(u × ν) > (2.38)

Since q is a unity quaternion, q = cos(Θ) + sin(Θ) ∗ n could be used, so that

Rq(p) =< cos(2Θ)ν > + < (1 − cos(2Θ))(n • ν)n > + < sin(2Θ)(n × ν) > (2.39)

is received.

The compiled realtions are of fundamental importance, as

• Rq describes the 3D-rotation of an arbitrary point P at an angle of 2Θ around

the axis N.

• Vice versa a 3D-rotation R(Θ) is fully described through a quaternion q. The

rotation of a point P simplifies itself to two multiplications with q and q̄.

p′ = qpq̄

q = cos(Θ
2
) + sin(Θ

2
)n

(2.40)

In the same way the translation and the concatenation of rotations and trans-

lations could be described with quaternions, which is especially interesting in the

context of animation.

Assuming that p and t are pure quaternions, which are characterizing the point P

in space and the translation vector t, so the following relation holds:

p′ = p + t (2.41)

Assume further that r is a unity quaternion, which specifies the rotation, thus a

concatenation of translation and rotation could be carried out through an operator

M(t,r).

p → p′ = Mt,r(p) = rpr̄ + t (2.42)

Postulating that M0,r qualifies a pure rotation, and Mt,1 a pure translation, as one

may see in Figure 2.7, the resulting transformation could be composed as

Mt,r = M0,r ∗ Mt,1 (2.43)
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Figure 2.6: The Virtual Trackball

The implementation of transformations in this vein is now quite simple. One only

have to implement routines for the described elementary operations on quaternions.

The transformation is now fully represented via t, N and Θ. No 4×4-transformation-

matrix is needed anymore!

2.11.3 The Virtual Trackball

The virtual trackball is very well suited to rotate an object on the screen interac-

tively and in real-time. A virtual trackball is realized, as one can see in Figure 2.6,

by calculating the rotation axis a and the rotation angle ϕ of a virtual sphere. The

rotation axis a is obtained over the cross-product of the vectors x′ and y′, which are

themselves received out of the projection of the coordiantes in the viewer-window

onto the virtual trackball. The rotation angle ϕ is gained through basic trigonomet-

ric relations. Out of the rotation axis a and the rotation angle ϕ a single quaternion

is built, which completely describes the rotation. For every individual section of

the animation a new quaternion is computed to encode the rotation. To simulate a

longer motion, as in Figure 2.7, the respective quaternions are multiplied. To really

rotate an object in the viewer-window, the calculated quaternions are in the end

converted into 4 × 4 rotation-matrices.

In comparison to the definition of quaternions, the real part of a quternion lies, in my

implementation, at the final position. This has the advantage, that all operations

on the imaginary part could be directely performed on the 4 × 1 quaternion-vector
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Figure 2.7: Flythrough

using OpenGL vector operations.

2.12 Read in and the corresponding tools

The read in is performed using TIPSY functions written by Joachim Stadel. In the

parallel version of Hubble in a Bottle! the master node reads in the file chunk-wise,

and directly sends the file pieces in a non-blocked fashion, so that the master node

don’t have to wait until the send is successful completed, to all slave nodes.

The original release of Hubble in a Bottle! from Tiziano Mengotti, was working with

two files: a binary file, in which the particles were stored, and with an ASCII file

in which all the densities were stored. Since the read in of ASCII files is noticeable

slower than the read in of binary files, the unused fields of type float of the TIPSY

dark particle were used to encode the densities and later also the smoothing lengths.

This was overdue, as the problem sizes have increased to tens of millions particles

and first of all because the amount of read in data has doubled, since beside the

particle positions and densities, the smoothing radii and the velocities are read in,

although up to now the velocities are not used for the visualization.

The fast read in of data in binary form is accomplished by the two small converting

tools HsmToEps, written by Joachim Stadel and the similar EpsToPot, written by

myself. HsmToEps is taking a binary bin-file consisting of the particle postions and

a hsm-file comprising of the smoothing radii, and outputs an eps-file via an UNIX

pipe. In an eps-file the eps-fields of the TIPSY dark particle are used to store the
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smoothing radii for all particles. EpsToPot is working analog, except that an eps-

and a density file are feed in and a pot-file is returned. As here a nor used field in

the dark particle is abused to encode the content, of an otherwise necessary, ASCII

file. A pot-file is at the same time the only input file for the latest version of Hubble

in a Bottle!, no other file is necessary anymore, and it brings down the time used

for preprocessing to a acceptable level.

The next step to further speed-up the preprocessing would be to read-in the input file

by all involved nodes in parallel. Because I was running out of time, the parallel read

in isn’t completed yet, and is only available as an imperfectly working alpha-version

in the source code. It’s therefore another small task to tackle, but furthermore in

the outlook section.
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Performance

All benchmarks were performed either on my workstation (3.2 GHz Intel Xeon) for

the serial version, or on the zBox for the parallel version of Hubble in a Bottle!.

The zBox is an in-house designed massively parallel supercomputer with 288 AMD

Athlon-MP 2200+ CPUs, connected by an 2D-torus SCI interconnection system

from Dolphin Interconnect Solution.

The performance is measured in terms of frames per seconde (fps), as I observed

that other kinds of performance measurement as e.g. responsiveness are fully de-

pendent of the frame-rate, but harder to quantify. I also want to accentuate, that

all measurements of the parallel version are done with full CPU and interconnection

load on the zBox, except for the nodes which were used by Hubble in a Bottle!.

For the measurements, the follwing real datasets were choosen:

Virgo.pot 1314161 particles

total.00580.pot 2460000 particles

MMCluster.pot 6298040 particles

top.00038.pot 27000000 particles

(3.1)

If not stated otherwise, the maximum-density plot-mode is used. Furthermore

the define FAST or SMOOTH is set, the former in case of the max-density or line-

of-sight plot modes, and the latter in the case of one of the smooth image modes.
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Figure 3.1: Serial Scaling of Hubble in a Bottle! for the Virgo dataset
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Figure 3.2: Serial Scaling of Hubble in a Bottle! for the MMCluster dataset
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Figure 3.3: Max Density vs. Line of Sight Scaling

3.1 The Results

The performance of the serial version of Hubble in a Bottle! depends to a great extent

on the pure number of particles. As one can see from Figure 3.1 and Figure 3.2, the

results varying between 3.3–13.7 fps for inputs among 1.3 and 6.3 million particles,

whereas the already mentioned Quick-Mode is always able to achieve values beyond

50 fps up to over 100 fps. One should keep in mind, that the default 50000 particles

for the Quick-Mode are selected randomly, so that the results can vary somewhat

from run to run.

From Figure 3.3 one can recognize, how the parallel version of Hubble in a Bottle!

scales with the number of processors, and how the performance of the line-of-sight

mode behave in comparison to the max-density mode. The conclusion is that the

efficiency is starting at all sizes at about 75%, but is then constantly falling. This

is of course to no surprise, since one has to increase the problem-size according to

a isoefficiency function. The outcome of the isoefficiency principle is, that Hubble

in a Bottle! has to switch to bigger problem sizes with increasing CPU numbers
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Figure 3.4: Smooth Scaling

to achieve a higher efficiency, which is in agreement with Figure 3.3. That it is

not scaling beyond 16 CPUs, even in the case of 27 million particles, is a litte bit

surprising, and will be discussed later.

One can also notice, that the line-of-sight mode is only by a constant addend more

expensive than the max-density plot-mode. Additionally there are evidences, that

the performance is somewhat smaller in case of CPU numbers unequal power of 2,

an effect becoming more pronounced with increasing number of CPUs. The buckling

of the blue curve of Figure 3.3 can be seen as a consequence of this speculation.

An increase of the computation to communication ratio as done here by switching

to the smoothing-modes, leads to better scaling, as seen in Figure 3.4. It is also

obvious, that the projection smooth-mode, has to have a higher order of N than

the slice smooth-mode, and therefore a much higher dependance on the number of

particles, to affirm the green line of Figure 3.4.

The Quick Scaling Figure 3.5 identifies why Hubble in a Bottle! isn’t scaling

well above 16 CPUs. If one consider the quick mode as an upper bound, which is

reasonable, because by default 50000 particles are used in the quick mode, which can
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Figure 3.5: Quick Scaling

be transformed and projected even with one CPU instantaneously, the converging

curves are a clear argument, that the computation is bounded by the communica-

tion.

The measured 256 MB/s point-to-point bandwith, should be good for 27 frames per

second, assuming a 768-by-768 resolution and 4 bytes per pixel, since each bug has

2 input and 2 output channels. The best result for the parallel version achieved so

far concerning throughput are 8.00 frames per second with turned off FAST mode

(4 bytes per pixel) and 4 CPUs on the Virgo2 dataset, which is fairly precisely

3.375 times behind the theoretical peak performance. Because the bandwidth mea-

surements were taken at zero load, and my benchmarks at maximum CPU and

communication load, I conjecture that the point-to-point bandwidth is substantial

lower, although I haven’t tested it.

In the end one can only argue, that 2.7 ∗ 107, is by far not Hubble Volume

Simulation size, but as one can recognize from Figure 3.3, Hubble in a Bottle! is

scaling pretty well with increasing particle numbers, so that I’m quite confident
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that Hubble in a Bottle! can visualize a few frames per second of a Hubble Volume

Simulation dataset in real-time, especially on an exhausted zBox and more CPUs

used.

3.2 Compiler Issues

When squezing out the maximum performance of a program, the compiler isn’t just

a simple translator, but rather a not to negligible repository of performance. The

compiler used here was an actual version of the GNU gcc, specifically the version

3.4.0. Beside the obvious optimization-flag -O3, which consists of the compiler-flags

of Table 3.1,

-fforce-mem -foptimize-sibling-calls -fstrength-reduce

-fcse-follow-jumps -fcse-skip-blocks -frerun-cse-after-loop

-frerun-loop-opt -fgcse -fgcse-lm

-fgcse-sm -fgcse-las -fdelete-null-pointer-checks

-fexpensive-optimizations -fregmove -fschedule-insns

-fschedule-insns2 -fsched-interblock -fsched-spec

-fcaller-saves -fpeephole2 -freorder-blocks

-freorder-functions -fstrict-aliasing -funit-at-a-time

-falign-functions -falign-jumps -falign-loops

-falign-labels -fcrossjumping -finline-functions

-fweb -frename-registers

Table 3.1: O3 compiler-flags

the following architecture specific and more sophisticated optimizations of Table

3.2 were used.
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Intel Architeture AMD Architecture

Serial version for my Workstation Parallel Version for the zBox

-mtune=pentium4 -mtune=athlon-mp

-march=pentium4 -march=athlon-mp

-mcpu=pentium4 -mcpu=athlon-mp

-mmmx -mmmx

-msse -msse

-msse2

-msse3

-m3dnow

-mfpmath=sse -mfpmath=sse

-funroll-loops -funroll-loops

-D NO MATH INLINES -D NO MATH INLINES

-pg -pg

Table 3.2: Additional sophisticated architecture specific compiler-flags

Alltogether this compiler-flags will get you an additional performance of about

60% above the gcc 3.4.0 with the standard optimization-flag -O2 and about 50%

speed-improvement above the pre-installed Intel VTune compiler from 2002 with the

highest optimization level, architecture optimizations, interprocedural optimization

(IPO), profiling (PGO) and auto-vectorization. The proposed compiler-flags can be

seen as at least nearly optimal. Even though it’s not clear if compiler-flag tuning

has any impact on the performance (Chan et. al. 1994 and Patterson et.al., 1995),

or is even irrelevant (Pugh, 2001), I spend a whole weekend on compiler-flag tuning

because to my mind speed-optimizations at large has to be approached in a more

pragmatic manner.

I would find it further very interesting to give Static Single Assignment (SSA) for

Trees a try (Cytron et.al., 1991 and Morgan, 1998), especially the auto-vectorization

function based on SSA. SSA for trees is going to be integrated into gcc in the

future, but one shouldn’t overestimate the optimization capabilities of compilers,

e.g. cache-locality are still the business of a system-programmer, as except of Sun’s
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Forte compiler (DeMone, 2002), compilers are not able to even recognize the swap

of column-major versus row-major matrix representation.

For the forthcoming zBox2, I propose to recompile Hubble in a Bottle! with the

Pathscale ECOPath compiler and especially with the further improved version 2.0,

which is specifically designed for the 64-bit x86-64 architecture.
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Difficulties

Since Hubble in a Bottle! is laid out as a serial as well as a parallel version from the

very beginning, the development got additional challenging. Beside that one has to

create parallel code alone, one also has to deal with what is called Serial/Parallel

Codesign, which implicates that everything has to be fully functional in serial and

in parallel simultaneously.

4.1 What makes parallel programming that hard

What makes efficient parallel programming hard, is that an algorithm has to be

resistant against race conditions, and this if possible without absolutely necessary

syncronization barriers. A parallel computer is a non-deterministic computer, which

means that it is executing the parallel processed commands everytime in a different

order as a program is running on several CPUs concurrently. A parallel algorithm

has to cover all these different execuction sequences, and since computers are per-

forming certain code-parts millions of times, even a very unlikely case in which

something can go wrong become almost certain. This requires a completely other

way of thinking, to which probably only electrical engineers are used to, as opera-

tions on a digital or analog circuit are also performed fully concurrently.

To my mind one should also approach the issue of correctness after electrical en-

gineering standards instead of computer science standards, because errors are in a

parallel program much more likely and considerabely harder to detect.
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4.2 Obstacles

All major obstacles were concerned with parallel programming and were emerging

mostly in the parallel reduction-tree. As yet chatacterized the most difficult part

was the correct timing of the parallel reduction-tree, since the buffers of the SCI-

cards are rather limited with at the the same time very high data throughput. From

this it follows, that the nodes aren’t allowed to run too much out of syncronization,

especially as no barriers are used for performance reasons. The solution I came up

with, of sending zero-packages around to self-syncronize the parallel reduction-tree,

isn’t as easy as is it sounds at first glance. For example since the loop of the parallel

reduction-tree adresses also the filling and the deflation of the pipeline, every node

has to strictly take care when to feed in a packet into the pipeline and when not

any longer. Additionally it’s essential to assure that every two packets going to

be merged in a node are of the same iteration, particularly because the delays in

an interconnection system are potentially very volatile. On the other hand a reset

of the local ValueMap of the last node is not necessary, because float numbers are

like integers, even if in an not so obvious way, cyclic. The handling of partly filled

packets had also be adressed carefully. Another profoundly difficulty appeared in

the context of MPI Irecv, the non-blocking receive. MPI Irecv has to be called with

a communication request handle, with has to be unique inside a single iteration,

although this isn’t explicit documented. A violation of this condition can lead to

subtle mutually overtaking packets. In an earlier version of Hubble in a Bottle! this

was catched by a sole remaining barrier, it took me days to conceive this and to

remove the last MPI Barrier command.

The last thing I want to mention wasn’t actually an obstacle, but aroses from an

syntax inconsistency of MPI. In Tiziano’s version 0.336 of Hubble in a Bottle! only

a forth of the actual particles were processed, which resulted in an essential perfor-

mance decrease during development and should be considered while evaluating the

achieved speed-up. This misadventure is rooted on the fact, that MPI accepts only

it’s own set of predefined types, whichever is recognizable at the MPI prefix. User

defined struct types are not allowed at all. Because each particle consist of 4 floats,

four times as much data has to be transfered, thus 4*N items of type MPI FLOAT.
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Not realized features and other

suggestions for improvement

This section is intended as a starting point for a potential developer. Beside a few

words on the new processor of the zBox2, I want to propose three projects and try to

highlight in which way they are interesting from the technical point of view and in

which from the pragmatic user perspective. All projects aren’t specific to Hubble in

a Bottle!, but one can use it as a playground to explore these interesting concepts in

general. Additional maintaining and improving the current code and documentation

basis should be always on the list.

First of all one should get Hubble in a Bottle! running on the forthcoming zBox2.

The details how to compile and run Hubble in a Bottle! as a serial and as a parallel

version is described in detail in the attached readme file and on the user homepage.

5.1 Optimize Hubble in a Bottle! for the forth-

coming zBox2

Tuning Hubble in a Bottle! for the zBox2 would be the next logical step and is also

well suited to get into the code. In the first instance I’m thinking about readjust-

ing the BUFFERSIZE variable, recompiling Hubble in a Bottle! with an optimizing

compiler like the mentioned Pathscale ECOPath compiler and perhaps compiler flag
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tuning.

The upcoming zBox2 is, as the original zBox, a massively parallel Cluster of Work-

stations, or COW in short. It is connectect in the approved 2D-Torus topology

via the ATOLL high-performance interconnection system. For the CPUs 384 AMD

Opterons are used, which are implementing the x86-64 instruction set, the 64bit ex-

tension of the never dying x86 instruction set. By the way it’s a common misbelief,

that 64bit processors are intrinsic faster than their 32bit analogons. As reported in

(Stiller, 2005) turned on x86-64 support is only of very limited benefit, which isn’t

quite astonishing as, the pure extension of the word size hasn’t any positive effect

on the performance at all, as long as no doubles are used, what is the case here. Fur-

thermore extending the word size to 64bit means, that only half of the instructions

are fitting into the caches. The pretended performance benefit comes from the fact

that x86-64 instructions are compiled with implicit turned on SSE2 optimization,

which is also possible in the 32bit mode and already done for the binaries of the

serial version of Hubble in a Bottle!, so that this argument is also not fully valid.

To prevent any misunderstandings, of course running Hubble in a Bottle! on the

zBox2 will lead to a major speed improvement, but not as 64bit CPUs are used, but

because the Opterons are also superb 32bit processors. Additionally they have a

higher core frequency, have tremdously increased number of registers, double sized

caches, an integrated dual channel memory controller and the serial point-to-point

HyperTransport bus.

5.2 Dual-level parallelism

From the HyperTransport bus I’m promissing myself the most, since it makes enough

bandwidth available to make dual-level parallelism possible, as it was already done in

(Hutter and Curioni, 2003) for ab-initio molecular dynamics. Dual-level parallelism

combines the two advantages of shared-memory and distributed-memory machines.

The whole machine is seen as a distributed-memory machine down to node-level,

where each node is considered as a shared-memory node. Up to present Hubble in
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Figure 5.1: A zBox2 Node

a Bottle! is only suited for distributed-memory machines, so that extended support

for shared-memory nodes have to be implemented using OpenMP. As one can see

in Figure 5.1, a single zBox2 node is realized as a non-uniform memory access

node, or abbreviated NUMA, which is kept coherent through at most three so-

called coherent HyperTransport links per processor. It’s fair to speak about shared-

memory nodes, because the whole memory of a single node is combined into a

single address space. For this reason NUMA machines are also called virtual shared

memory machines (Boryczko et.al., 2003). To be fully accurate a single zBox2 node

is a ccNUMA node, as the cache is also kept coherent through a broadcast-based

SMP-like snooping protocol (MESI), in which bus snooping is simulated by explicit

broadcasts of memory requests to all processors. Of course reduces the coherence

traffic the connection bandwidth, but it’s still far better than a SMP-node, since the

bottleneck of a single shared bus is removed. This accessorily constitutes a principal

predominance over the actual zBox.

Alltogether this is, the way I see it, the most effective, but also the most challanging
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project I’m proposing, since it needs competences at several fronts, beyond parallel

programming knowledge particularly proficiency at the operating system level and

system administration skills. Additionally such a project stands and falls with the

available vendor support for parallel programming APIs like MPI and OpenMP.

5.3 Speed Optimizations using SIMD Instructions

As the second project I’m proposing various speed optimizations for the critical

sections of Hubble in a Bottle! using SIMD extensions, or even the GPU of the

graphics card.

SIMD is an acronym for Single Instruction, Multiple Data, which was first coind

by the former Stanford Professor Michael J. Flynn in his classification of parallel

architectures (Flynn, 1996). It means that a single instuction is performed over mul-

tiple data and particularly concurrently. Array and vector processors are porminent

members of this class.

5.3.1 x86 SIMD Extensions

In current x86 processors the SIMD principle is implemented using 64bit and 128bit

registers respectively, in which multiple data are put in. These instruction set ex-

tensions turning the x86 processors into a form of vector processors. Tiziano already

programmed optimized 3Dnow! and SSE routines, depending on which architecture

Hubble in a Bottle! was executed, for the at that time critical matrix-matrix mul-

tiplication. In order to get rid of maintaining two different implementations, I used

the common denominator of the Intel Pentium 4 and the AMD Athlon processor

used in the zBox, and wrote my versions of the matrix-matrix multiplication in SSE.

As already described, it later turned out that replacing the matrix-matrix multipli-

cation through a vector-matrix multiplication is the much better idea, but the new

routine is only written in optimized ANSI C.

My proposal is now to rewrite my routine in highly optimized SSE2, since SSE2

is becoming the new common denominator between the most modern processors of

the Intel and AMD processor families, as the zBox2 went online. A very good step
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by step instuction, how to speed up my version of a vector-matrix multiplication by

about a factor of 3 or even 4, is available as a case study authored by (Stratton,

2002). This case study is very instructive and should be convinient even for novices

in the area of SIMD programming.

The learned techniques and especially the memory prefetching could be also applied

to other parts of Hubble in a Bottle! to further speed-up the program. The great

thing about this small project is that it is quite focused to certain parts of the code,

which makes this well suitable even for a very limited project, as the time it takes

to familiarise oneself with the code is rather short.

For me this is a very neat assignment, the only drawback I see is that it is very un-

certain, if this has an substantial effect on the performance of the parallel version,

because the vector-matrix multiplication should be as far as possible overlaped by

the communication if the BUFFERSIZE variable is properly choosen. The serial

version in contrast should gain a major speed-up in any case.

5.3.2 GPU programming

Another place to perform SIMD operations is the GPU of the graphics card, which

should be considered because of it’s unchallenged price/performance ratio and the

enormous evolution speed of the GPUs, that is even faster than Moore’s law for

CPUs. Since the introduction of DirectX9 and the associating GPUs implementing

it in hardware, the development of GPUs has reached a new high-point with the

adoption of single-precision 32bit floating-point capabilities and high-level shader

languages such as Cg (Mark et.al., 2003), HLSL and the OpenGL Shading Lan-

guage (Kessenich, 2004), as they facilitate the abstraction of current GPUs as stream

processors.

As mentioned a GPU is the attempt to map as much as possible of the rendering

pipeline (Figure 5.2) onto hardware, what is achieved more and more from gener-

ation to generation. For this reason a modern graphics card consist of a vertex as

well as a pixel or fragment processing unit. The first one is processing triangles,

whereas the latter is treating pixels or fragments, what are basically pixels with

their associating colours. For historically reasons the two processing engines are

March 10, 2005



5.3. Speed Optimizations using SIMD Instructions 45

Figure 5.2: Rendering Pipeline

also called shaders.

Since DirectX9 the GPU can be programmed using conditional branches and loops,

additionally the maximum number of instructions of a single fragment and vertex

shader has been increased in such a way, so that it’s became possible to implement

general purpose computations as shader programs.

Current GPU hardware are supporting 4D-vectors for either homegeneous coor-

dinates or RGBA color channels through a complete set of SIMD floating-point

instructions on these vectors. All attemps (Larsen and McAllister, 2001) to perform

non-graphical general purpose matrix calculations on the GPU were only exploiting

the fragment processor, because fragment programs are able to access texels (tex-

ture elements) from random positions in the texture memory and are supporting

gather operations, which is not the case for the vertex processor. Using Cg or any

other high-level shader programming language, fragment programs can now be im-

plemented in a C-like high-level language, instead of a kind of assembler.

But although such high-level shader languages are availble, GPU programming
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is anything but easy, since (Hall et.al., 2003) showed that cache and bandwidth

awareness are fundamental to achieve respectable performance results in matrix-

multiplications. So far it is believed that a tremdous speed-up could be achieved in

performing matrix-multiplications, even though nobody has really achieved them.

Some authors (Moravanszky, 2003) were even struggeling to outperform general-

purpose CPUs. In the meantime evidences suggests (Fatahalian et.al., 2004) that

the bandwidth to main memory marking another eminent bottleneck, since GPUs

are streaming processors which are only sustaining their peak performance if they

are kept busy. It was reported by (Fatahalian et.al., 2004) that they were able to ac-

complish the same performance as a current high-end CPU, but only with a state of

the art graphics card and that they were not achieving loads beyond 20%. Further-

more they proved that this couldn’t be improved, as the main memory bandwidth

limit is fundamental. It’s therefore indistinct, if switching the matrix computation

to the GPU, is a good idea at all.

The idea of a GPU Cluster for High Performance Computing as published by (Fan

et.al., 2004), is only reasonable if the work/bandwidth ratio of the GPU is higher

than for the matrix-computation alone. This could be perhaps achieved by letting

the GPU performing even more work of Hubble in a Bottle!, as for example the pro-

jection could be done by the vertex processor, but this is also substantial harder to

achieve, since only very unefficient mappings of point-based data to vertex shaders

are known.

5.4 Additional functions and features

The next area, where it’s worth to put extra effort into, is the never-ending field of

additional functions and features.

I’m thinking in this regard about a parallel read in, as it was realized in the PKD-

GRAV code. Parallel read in means, that all involved nodes are reading their own

chunk of data from the input file concurrently. In addition the distribution of file

pieces over the interconnection system is not necessary anymore. Code snippets and

alpha version for such a parallel read in is already available.
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Another nice to have feature would be the capability to write screen shots into files.

Tiziano already wrote correct looking functions to write screen shots into bitmap

files, but as yet it frankly didn’t worked at all, and I also wasn’t able to figure out

what was wrong. Furthermore the support of a lossless compressing image format,

like the freely available PNG format would be highly desirable, since bitmap files

are getting very large. Even better would be moreover a scripting interface as it’s

available for TIPSY to compose whole videos made up of single images, since putting

them together by individual screen shots would be far too cumbersome.

Working with interfaces is in general a good idea. For example one could think of a

general programming interface, where one could connect self-programmed plug-ins.

To proceed a CVS folder for such plug-ins would be an opportunity, so that already

programmed add-ons could be shared.
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Conclusion

In this thesis I dealt largely with the parallelization and speeding-up of Hubble in

a Bottle!. The original goal to make live flythroughs across huge datasets possible

wasn’t achieved. Only for the serial version and for datasets in the range of one to

two millions the at least necessary 15fps were reached on a high-end workstation.

However I showed that the frame rate of the parallel version is limited by the band-

width and even more by the latency of the interconnection system. The scalability

to bigger datasets in contrast is much more promissing and allows the visualization

of tens of millions particles in real-time at a particle throughput of over one hundred

million particles. In addition there are evidences that this trend could be continued

to some extend to even bigger datasets.

During the development at Hubble in a Bottle! an innovative parallel reduction-tree,

a consistent way to broadcast user-interactions in a parallel environment and the

integration of the Tipgrid code were explored.

In the addendix a novel expansion of the CORDIC algorithm to take logarithms

efficiently is described, which is going to be implemented in the scaling routine.
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Appendix A

A not so new logarithm algorithm

The algorithm I’m going to describe belongs to the family of CORDIC algorithms.

CORDIC is an acronym that stands for COordinate Rotation DIgital Computer and

goes back to Volder (Volder, 1959). In the early 1980s, this method was used by

Hewlett-Packard (Schelin, 1983) in their HP-35 calculator to evaluate trigonometric

functions.

The power of CORDIC-like algorithms is due to the fact, that only shifts and adds

are necessary, and no multiplications or divisions like in series expansions have to

be performed. Therefore in spite of merely linear convergence, it even outperforms

floating-point techniques with quadratic convergence.

The CORDIC concept has been extended and further developed by (Despain, 1974)

to perform the Discrete Fourier Transform. Later Walther (Walther, 1971) unfied

the CORDIC theory, which was then applied by (Chen, 1972) to compute exponen-

tials, logarithms, ratios and square roots. Beyond this in a recent publication (Lang

and Antelo, 2005) reported about how to use CORDIC-based algorithms to perform

high-performance 3D geometry operations as a alternative for the quaternion rep-

resentation. They also gave a brief outline to a CORDIC-based stream processor.

CORDIC algorithms at large have been at all times implemented in hardware, since

it’s structure is inherent suitable to get implemented in hardware.
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A.1 The Basic Idea

The basic idea is to decompose the input into the following product

∞∏
k=0

(
1 +

1

2k

)dk

, with dk = {0, 1} (A.1.1)

Such a decomposition is distinct, which was first proven by Richard Feynman, but

never published. The logarithm of this product is identical to the sum of the loga-

rithms of the single terms, thus
∑∞

k=0 dk logb(1 + 1
2k ). The logarithms are stored in

a precomputed lookup table with as many entries as the desired accuracy in bits.

To get an accuracy of 10−16 � 2−53, what corresponds to double precision accuracy

on a computer, only 53 iterations are required and even 24 to reach single precision,

instead of tens of thousands, which are necessary for other iterative methods like

e.g. series expansions.

The algorithm uses only additions, multiplications by a power of two (’shifts’) and

comparisons, and gains approximately one bit more precision per iteration.

A real novelty of this algorithm is the stopping criterion, which is being based on

the property 0 ≤ x − xk ≤ 2−k+1, which is equivalent to 2−k+1 > ε.

A.2 The Actual Algorithm to take Logarithms

input: x ≥ 1; precision ε

output: logb(x) approximated accurately by xk = tk

initialize: t0 := 0; e0 := 1.0; k := 0

while 2−k+1 > ε do

dk :=




1, if ek(1 + 1
2k ) ≤ x

0, otherwise

tk+1 := tk + dk logb(1 + 1
2k )

ek+1 := ek(1 + dk
1
2k ) = ek + dk

1
2k ek

k := k + 1

end loop

An invariant of this algorithm is that logb(ek) = tk = xk ∀k.
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The presented algorithm converges for any x ≥ 0, x �= 1, assumed the basis b satis-

fies b ≥ 0 and b �= 1. Above all it solves problem 1.2.2-28 of Donald Knuth’s book

”The Art of Computer Programming, Volume 1” (Knuth, 1997), which is credited

to Richard Feynman.

A.3 The Expansion to Compute the Power

The same algorithm can be used to compute the power, by interchanging the in- and

output. This changes the above invariant logb(ek) = tk into btk = ek, so that taking

the logarithm of ek(1 + 1
2k ), to get an algorithm for the inverse operation, results in

tk + logb(1 + 1
2k ) using the invariant identity. The above precomputed lookup table

don’t has to be changed and could be reused.

input: x ∈ R; precision ε

output: bx approximated accurately by xk = ek

initialize: t0 := 0; e0 := 1.0; k := 0

while 2−k+1 > ε do

dk :=




1, if tk + logb(1 + 1
2k ) ≤ x

0, otherwise

tk+1 := tk + dk logb(1 + 1
2k )

ek+1 := ek(1 + dk
1
2k ) = ek + dk

1
2k ek

k := k + 1

end loop

An invariant for this algorithm is btk = ek = xk ∀k.

It converges for x ∈ R, given b > 1.
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